nonexistence$53256$ - определение. Что такое nonexistence$53256$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое nonexistence$53256$ - определение

MATHEMATICAL PROPERTY SHARED BY MANY NUMBER SYSTEMS, THAT A PRODUCT CANNOT BE ZERO UNLESS ONE OF ITS FACTORS IS ZERO
Zero-Product Property; Zero product rule; Zero-product rule; Zero product property; Null factor law; Nonexistence of nontrivial zero divisors

Zero-product property         
In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, \text{if }ab=0,\text{ then }a=0\text{ or }b=0.
existent         
ABILITY OF AN ENTITY TO INTERACT WITH PHYSICAL OR MENTAL REALITY
ExistencE; Nonexistence; TheExistenceOfPhysicalObjects; The existence of physical objects; Existance; Nonexistent; Nonexistant; Inexistence; Non existence; Non-existence; Existing; Existent; Non-existent; Non existent; Existently; Existences; Existers; Existed; Exiᶘts; No existence
You can describe something as existent when it exists. (FORMAL)
Their remedy lay within the range of existent technology.
= existing
ADJ
see also non-existent
Existed         
ABILITY OF AN ENTITY TO INTERACT WITH PHYSICAL OR MENTAL REALITY
ExistencE; Nonexistence; TheExistenceOfPhysicalObjects; The existence of physical objects; Existance; Nonexistent; Nonexistant; Inexistence; Non existence; Non-existence; Existing; Existent; Non-existent; Non existent; Existently; Existences; Existers; Existed; Exiᶘts; No existence
·Impf & ·p.p. of Exist.

Википедия

Zero-product property

In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, if  a b = 0 ,  then  a = 0  or  b = 0. {\displaystyle {\text{if }}ab=0,{\text{ then }}a=0{\text{ or }}b=0.}

This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. All of the number systems studied in elementary mathematics — the integers Z {\displaystyle \mathbb {Z} } , the rational numbers Q {\displaystyle \mathbb {Q} } , the real numbers R {\displaystyle \mathbb {R} } , and the complex numbers C {\displaystyle \mathbb {C} } — satisfy the zero-product property. In general, a ring which satisfies the zero-product property is called a domain.